
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Lossless compression of public transit schedules
Sebastian Wandelt, Xiaoqian Sun∗ and Yanbo Zhu∗

Abstract—Transit agencies electronically publish transit sched-
ules and route data to improve the customer experience or as
part of the open data initiative. The release of such data poses
several data management challenges, because schedules for a
single city can easily exceed storage requirements of several
hundreds of megabyte. One way to deal with these challenges is
data compression. The encoding of public transit schedules often
follows the General Transit Feed Specification (GTFS), which
cannot be compressed well out of the box.

We propose GTFSCompress, an algorithm for compression
of GTFS data, based on referential compression queues, which
compress a column stream depending on previously seen items in
this stream and other streams. Our evaluation on ten real-world
datasets shows that GTFS feeds can be compressed by a factor
of 100 and more. This is up to one order of magnitude better
than using the best standard compressors.

Index Terms—Traffic information systems, Data management

I. INTRODUCTION

In the last decades, urban travel patterns undergo tremen-
dous changes. While the amount of automobile usage saw
an unprecedented growth, recent trends indicate an increased
importance of public transportation infrastructures [1]. Public
transportation helps to address the following problems, among
others: High traffic congestion [2], excessive energy consump-
tion [3], high CO2 emission [4], and increased awareness
of public health [5]. Furthermore, the extraordinary growth
in excessive smartphone usage has led to new scenarios for
guiding citizens through multi-modal urban environments [6].

Recently, transit agencies have started to electronically pub-
lish transit schedules and route data to improve the customer
experience [7]. Transit data is often released in a standardized,
broadly accepted format called General Transit Feed Specifi-
cation (GTFS) [8]. This feed format was originally developed
by Google in cooperation with Portland TriMet. Since then,
GTFS feeds have found their ways into broad usage within
transport community. We describe some of these GTFS-based
approaches next; for a complete review see [7].

[9] describe cooperative transit tracking with GTFS feeds,
a crowd-sourced alternative to official transit tracking. [10]
develop a travel assistance device to aid transit riders with
special needs; public transit information is obtained by GTFS
feeds. [11] characterize transit service quality with excess
journey time (arrival delay); public transportation schedules
for London Overground are obtained from GTFS feeds. [12]
develop a system to extract the personal transit travel diaries,
by matching GPS traces to vehicle locations and public
transportation schedules from GTFS feeds. The system is
evaluated in San Francisco’s Muni network. [13] analyze
aggregate commute mode shares; particularly focusing on the
share of transit relative to auto. The authors’ calculations

S. Wandelt is with Beihang University, Beijing, China e-mail:
(wandelt@informatik.hu-berlin.de).

X. Sun is with School of Electronic and Information Engineering, Beihang
University, Beijing, China e-mail: (sunxq@buaa.edu.cn).

Y. Zhu is with Aviation Data Communication Corporation, No. 238 Baiyan
Building, 100191 Beijing, China e-mail: (zyb@adcc.com.cn).

∗ Shared corresponding authors: X. Sun and Y. Zhu.

are accomplished using only publicly-available data sources,
one of them is a GTFS feed of Metro Transit from Twin
Cities. Web-based systems for reporting positions of public
transit vehicles have been developed based on GTFS data, for
instance, OneBusAway [14] and TRAVIC [15].

One major limitation of GTFS data is that the storage
requirement is very high. Managing the public traffic schedules
for Paris, for instance, needs 700 MB of storage. Standard
compression tools cannot compress GTFS data efficiently,
since they cannot exploit the structure inherent to the spec-
ification of GTFS; frequently incurring context changes also
make compression hard. Therefore, the design and develop-
ment of efficient compression tools are one requirement for
dealing with big data in transportation. Recent data handling
techniques for GTFS files are either based on lossy compres-
sion [16] or focus on uncompressed indexing [17]. Standard
lossless compression techniques, on the other hand, do not
fully exploit existing compression potential.

In this paper, we present GTFSCompress, an algorithm
for compression of GTFS data. Given that GTFS datasets
are essentially a set of relations, we propose to extend a
traversal strategy from the database domain, so-called column-
traversal. The processing of columns separately leads to so-
called vertical compression [18], which achieves higher com-
pression ratios than standard horizontal compression. Based
on the idea of column-wise compression, we propose a new
data structure called referential compression queues, which
compress a column stream depending on previously seen
items in this stream and other streams. Our evaluation on
ten real-world GTFS datasets shows that the compression
ratio is increased by a factor of 5–10, compared to standard
compression tools. The major contributions of our work are:

1) Compared to standard compression algorithms, we pro-
pose a column-wise traversal strategy, which avoids fre-
quent context changes, since compressing mixed content
is much harder than compressing homogeneous values.

2) Opposed to [16], we propose a lossless compression
technique, which means that the original file can be
reconstructed during decompression. This is important
for downstream analysis, especially when dealing with
geospatial data. Moreover, we show that even lossless
compression can yield very high compression ratios.
Therefore, we do not need to loose information to com-
press GTFS files with high compression ratios.

3) Opposed to [17], we focus on compressed representations
and lossless reconstruction, instead of retrieval/query per-
formance. Storing GTFS relations together with indexes
increases the required amount of storage significantly.

4) Our compression technique can be seen as a very general
way for compressing CSV files; not only applicable to
GTFS, but also other relational data. Furthermore, our
algorithms can be seamlessly applied, in case the structure
of GTFS files is revised, as long as the underlying data
model is still relational.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2

The remaining part of this paper is structured as follows.
Section II discusses related work on compression of GTFS
feeds and the GTFS format is reviewed in Section III. We
introduce our GTFS compression technique and its implemen-
tation in Section IV. Section V evaluates our new techniques
on ten real-world GTFS datasets. The paper is concluded in
Section VI.

II. RELATED WORK

A large body of literature has discussed how to use GTFS
feeds for increasing travelers’ experiences during public transit
(see our summary above). There is, however, only few work
dealing with the associated data management challenges. [16]
develop a data structure for storing GTFS feeds on mobile
devices. Since their work is closely related to ours, we discuss
the major limitations in detail.

1) The compression method is lossy. This means that upon
compression, some data is inevitably lost and cannot be
recovered during decompression. We provide only a few
examples here: The authors omit some parts of GTFS
feeds completely (e.g. agencies, frequencies, and custom
sub-feeds). The authors make several decisions about
what parts of the feed are relevant and up to which degree;
whether these parts are indeed relevant, clearly depends
on the context and use case. It should be noted that the
goal of [16] was not to compress GTFS data in general,
but to create an implementation of a commercial public
transit application using different data sources (including
GTFS feeds).

2) The compression method possibly requires human
interaction for new cities. The compression of GTFS
files needs human interaction at several stages, such
that an automatic compressor/decompressor for GTFS
feeds cannot be implemented directly1. We provide some
examples here: Routes in the GTFS file are grouped by
hand according to various features which depend on the
city. Moreover, stops/shapes which are not more than a
few meters away from each other, are merged (in few
cases).

3) The formal description is sometimes incomplete.
Throughout the paper, the authors leave details about
their implementations open. For instance, the maximum
distance between merged stops and the degree of similar-
ity between merged routes are not sufficiently described,
which makes the reproduction of their results difficult.
The code-snippets supplied in the Appendix of [16] do
not help to resolve these issues, since they are enu-
merating some C++ structures without stating how they
are used/populated. The complete code for compressing
GTFS feeds is not available either.

Therefore, while the paper raises interesting ideas for com-
pression, its impact on the transportation community is rather
limited. Even after careful analysis of the paper, it is still
unclear, how much of the original feed is left exactly in
their compressed representation. This is problematic, since
compression algorithms are, in general, intended to be lossless.

[17] present a web-based archive for transit performance
data. The authors, however, do not address data storage
challenges, but data integration issues, for instance, merging
GTFS feeds with other transit (live) data. Similarly, the Portal
transportation data archive2 is described in [19]. Within 10

1According to the authors, most of these hand-made changes either 1)
increase the user experience or 2) repair inconsistencies in the GTFS dataset.

2http://portal.its.pdx.edu/

years, the Portal has grown to approx. 3 TB of transportation-
related data, covering, for instance, freeway data, arterial
signal data, and travel time. While the authors describe use
cases for the Portal, storage management challenges are not
addressed.

GTFS was proposed quite recently and its use (in academic
research) is spurred lately by an increasing publication of
real-world transportation datasets. Currently, studies on urban
transportation often deal with small/single urban areas only,
where the big data problem is not so evident, since, for
instance, even all the transportation data for Paris can be
managed on a commodity laptop nowadays. However, for
future research, we envision the publication of larger GTFS
feeds for a) huge metropolitan areas and b) different temporal
periods. Particularly, the latter item will play a key role
for analysis of dynamics in urban transportation. At this
time, storing and retrieving large sets of (worldwide) GTFS
feeds will become a challenging problem, which will also be
reflected by publications in this area.

Research on general data compression algorithms can be
broken down into two areas:

1) Universal compression schemes: Such algorithms com-
press any kind of input, without exploitation of the
file structure or content. Example for these algorithms
are LZ77 [20], PPM [21], and BWT [22]. These algo-
rithms have in common that they work on the symbol
level (bits/bytes) and maintain frequency statistics during
compression, where frequently occurring symbols receive
shorter codes than rare symbols.

2) Domain-dependent compression schemes: Such algo-
rithms exploit domain information to significantly in-
crease compression rates, compared to universal com-
pression schemes. For instance, biological sequences are
compressed using dictionary-based, statistical, or refer-
ential encoding, the latter ones taking a single genome
as a reference and encoding other genomes of the same
species by denoting the deviations only [23]. Similarly,
video sequences are often encoded frame by frame, where
only deviations from a to-be-compressed frame and a
fixed key frame are encoded [24]. Other domain-specific
compression methods have been developed, among oth-
ers, for GPS traces [25], aircraft trajectories [26], weather
radar data [27], and sensor networks [28].

III. GENERAL TRANSIT FEED SPECIFICATION

The General Transit Feed Specification (GTFS) [8] was
originally developed by Google, in cooperation with Portland
TriMet3, as a standardized way to model transit schedules.
Below, we describe the files in a GTFS feed in detail. Each
file describes information in the relational data model and is
serialized using comma-separated value files. Please note that
the feeds sometimes contain additional files (not modeled in
the specification).
• agency.txt: A list of transit agencies providing data.
• stops.txt: All stops of the feed for pick up or drop off.
• trips.txt: All trips in the feed, where a trip is a sequence

of stops which occur at specific time.
• routes.txt: All routes in the feed, where a route is a group

of distinct trips.
• stop times.txt: Arrival and departure time of vehicles at

individual stops for trips.
• calendar.txt: Dates for services using a weekly schedule.

3http://trimet.org/

http://portal.its.pdx.edu/
http://trimet.org/

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 3

• calendar dates.txt: Exceptions for calendar.txt file.
• fare attributes.txt: Information on fares.
• fare rules.txt: Information on how to apply fares.
• shapes.txt: Information on visualization of routes.
• frequencies.txt: Headway (time between trips) for routes

with variable frequency of service.
• transfers.txt: Information about transfer points.
• feed info.txt: Information about the feed.

IV. COMPRESSION OF GTFS

In this section we present our algorithms for compressing
GTFS data. The algorithms are implemented in our tool
GTFSCompress. The formal compression model is introduced
in Section IV-A, and the actual implementation of GTFSCom-
press is presented in Section IV-B.

A. Formal compression model

A string s is a finite sequence of characters from an alphabet
Σ. The concatenation of two strings s and t is denoted with
s ◦ t. A string s is a substring of string t, if there exist two
strings u and v (possibly of length 0), such that t = u ◦ s ◦ v.
The length of a string s is denoted with |s| and the substring
starting at position i with length n is denoted with s(i, n).
s(i) is an abbreviation for s(i, 1). All positions in a string are
zero-based, i.e., the first character is accessed by s(0).

Definition IV.1 (GTFSRelation). A GTFSRelation with m
columns and n rows is a matrix

MGTFS =

h1 h2 h3 . . . hm−1 hm 1 x1,1 x2,1 x3,1 . . . xm−1,1 xm,1
2 x1,2 x2,2 x3,2 . . . xm−1,2 xm,2
.
n x1,n x2,n x3,n . . . xm−1,n xm,n

The column of MGTFS with header hi is denoted with
Mhi

GTFS = [xi,1, xi,2, xi,3, . . . , xi,n−1, xi,n]. The number of
columns is denoted with colCount(MGTFS) = m and the
number of rows is denoted with rowCount(MGTFS) = n.
The item at column i and row j, i.e. xi,j , is denoted with
MGTFS [i, j].

Example 1. We discuss an example of a valid GTFS
relation, for the type stop times.txt. MEX1 provides a simple
description of two trips (trip id = {1, 2}) from stop 9230999
to stop 9220070. The second trip (trip id = 2) starts 10
minutes after the first trip.

MEX1 =

tr
ip

id

ar
ri

va
l

tim
e

de
pa

rt
ur

e
tim

e

st
op

id

st
op

se
qu

en
ce

pi
ck

up
ty

pe

1 1 04 : 45 : 00 04 : 45 : 30 9230999 1 0
2 1 04 : 51 : 00 04 : 51 : 30 9230400 2 1
3 1 04 : 59 : 00 04 : 59 : 30 9220019 3 0
4 1 05 : 06 : 00 05 : 06 : 30 9220070 4 0
5 2 04 : 55 : 00 04 : 45 : 30 9230999 1 0
6 2 05 : 01 : 00 05 : 01 : 30 9230400 2 1
7 2 05 : 09 : 00 05 : 09 : 30 9220019 3 0
8 2 05 : 16 : 00 05 : 16 : 30 9220070 4 0

In the following, we discuss strategies for compression
of GTFS relations. Standard compression tools usually per-
form a byte-wise compression, which means that these
tools view a GTFS relation as a stream of bytes. The

serialization of GTFS relations in a CSV-file is line-by-
line. Therefore, standard tools will compress GTFS rela-
tions line-by-line. The first line of MEX1, for instance, is
’1,1,04:45:00,04:45:30,9230999,1,0’ followed by the second
line ’2,1,04:51:00,04:51:30,9230400,2,1’. Compressing such
lines is inherently inefficient (see our evaluation in Section V):
During the traversal of a line, similar items are not kept
together, and also cannot easily be identified as similar by
standard compression tools, since these tools do not break lines
into their items, but rather work on a per-byte level.

An alternative traversal strategy is to compress GTFS rela-
tions column-wise, a processing strategy with long traditions
inside the database community [29], [30]. Column-oriented
database systems have been shown to outperform traditional
ones significantly for specific tasks [31], [32]. Moreover, the
storage of similar values together allows for very efficient com-
pression, called vertical compression in [18]. Avoid changing
compression contexts has also been discussed in the Bioin-
formatics community [33], where FASTQ-files representing
information about sequencing of individuals are compressed.
In addition to the raw data, FASTQ files contain also metadata,
such as quality scores denoting uncertainties occurred during
sequence identification. All these streams in the input file are
compressed separately, which yields an increased compression
ratio and significantly higher compression speeds [33].

Starting with the idea of column-wise compression, we
design a compression algorithm for GTFS relations as fol-
lows. First, we define a compression technique for a column
following a sliding window over the to-be-compressed column.
Intuitively, the compressed code for an item is computed based
on the previous n items occurring in the column. Second,
we generalize this compression technique in such a way that
the code for an item in a column can also be computed on
previous and current items in other columns. In order to ensure
decompressibility, we need to avoid cyclic dependencies for
computing codes from other column values.

Definition IV.2 (Self-referential compression queue). A Self-
referential compression queue for column i, with hi =
[xi,1, xi,2, . . . , xi,n] of MGTFS with window size w, is a
list [code1, code2, . . . , coden], such that codej is a com-
pressed representation of xi,j , computed from the list
[xi,j−w, xi,j−(w−1), . . . , xi,j−1].

Definition IV.2 ensures two things: 1) The amount of
memory is limited by window size w during compression
and decompression; 2) unique decompressibility is ensured
by referencing previously occurred items only, which can be
incrementally decoded at decompression time. We will discuss
a simple self-referential compression queue below.

The column stop sequence from MEX1 of Example 1
contains a sequence of increasing integers, within a single
trip. Therefore, knowing the preceding value of an item in
a column can often yield a more compact representation:
Instead of encoding the absolute value of a stop sequence,
we encode the difference with the previous item minus 1.
That is, we design a self-referential compression queue with
window size w = 1. Hereby, codej = xi,j − xi,j−1 − 1.
For the remainder of this example, we assume that xi,0

is preset to −1. The first code, code 1, is computed to
0 − (−1) − 1 = 0. The second code, code 2 is evaluated to
1 − 0 − 1 = 0. Overall, we obtain the self-referential com-
pression queue [0, 0, 0, 0,−4, 0, 0, 0]. Following run-length
encoding [34], such a sequence can often be better compressed
than the original sequence [1, 2, 3, 4, 1, 2, 3, 4]. The decom-

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 4

pression of [0, 0, 0, 0,−4, 0, 0, 0] is straight-forward, knowing
the initial value xi,0. The column stop sequence is only one
example for how self-referential compression queues can be
used for an efficient compression. Another example is the
column arrival time. Encoding, for instance, the temporal
difference between 04:51:00 and previous value 04:45:00 (in
seconds) consumes less space than the uncompressed storage
of 04:51:00. A third example is the prediction of the next
stop in column stop id. Trips along the same route often
contain identical subtrips. Thus, given knowledge about the
stop-pairs of previous trips, one can often accurately predict
the next stop of the current trip (unless the trip goes along a
different route). We generalize the concept of self-referential
compression queues to referential compression queues, which
can refer to other columns for computing codes.

Definition IV.3 (Referential compression queue). A ref-
erential compression queue for column i, with hi =
[xi,1, xi,2, . . . , xi,n] of MGTFS with window size w, is a
list RCQi = [code1, code2, . . . , coden], such that codej is
a compressed representation of xi,j , computed from the lists
L1, . . . , Lm, such that

Lk =

{
[xk,j−w, xk,j−(w−1), . . . , xk,j−1, xk,j] if k 6= i

[xk,j−w, xk,j−(w−1), . . . , xk,j−1] otherwise

It should be noted that in referential compression queues, a
code can be computed based on items of other columns in the
same row. Therefore, in order to ensure decompressibility, we
need to avoid cases where a codej for column i1 is computed
based on xi2,j and at the same time codej for column i2
is computed based on xi1,j . Intuitively, we need to avoid
cyclic references. A referentially compressed GTFS relation
is defined as follows.

Definition IV.4 (Referentially compressed GTFS relation). A
referentially compressed GTFS relation for MGTFS is a list
of referential compression queues [RCQ1, . . . , RCQn], such
that each RCQi is a referential compression queue for column
i of MGTFS , and there are no cyclic references between the
compression queues.

Our Definition IV.4 provides a framework for compressing
GTFS relations. The actual implementation, however, is left
open. This mainly concerns the decision about which column
is encoded against other columns. We will address this in the
next subsection.

B. Implementation
First, we discuss the compression of the three largest

relations occurring in GTFS, according to our empirical eval-
uation in Table II (see Section V). These three relations are
stop times.txt, shapes.txt, and trips.txt. All remaining files are
compressed with a simple compression method, since they do
not contribute much to the compressed size of a GTFS dataset.

1) Compression of stop times.txt: The file stop times.txt
consists of five or more columns. The five mandatory columns
are: trip id (uniquely identifying a trip for which stop times are
encoded), stop id (the stop whose schedule is described), ar-
rival time (time when the public transport vehicle is scheduled
for arrival), departure time (time when the public transport
vehicle is scheduled for departure), and stop sequence (an
increasing number, identifying the order of stops along a trip).
Other (optional) columns contain, for instance, information
about wheelchair accessibility and links to shape information

Algorithm 1 Compression of stop times.txt
Input: to-be-compressed GTFS relation Mstop times with m columns and n
rows, and a windows size w
Output: Referentially compressed GTFS relation RCRstop times

1: Let heads = [h1, h2..., hm]
2: for all h ∈ heads do . Assign a referential compression queue to each head,

with the code being a raw string
3: Let RCQ[h] = [′R′ ◦ xh,1]
4: end for
5: for 2 ≤ j ≤ n do . For a head h, below we denote

[xh,(j−w), . . . , xh,(j−1)])) with W (h)
6: for all h ∈ heads do
7: if h ≡′ trip id′ or h ≡′ stop sequence′ then
8: append(RCQ[h], encodeINC(xh,j , xh,j−1))
9: else if h ≡′ stop id′ then

10: append(RCQ[h], encodeSUCC(xh,j ,W (stop id)))
11: else if h ≡′ arrival time′ then
12: append(RCQ[h], encodeAT (xh,j , xstop id,j ,

W (arrival time),W (departure time),W (stop id)))
13: else if h ≡′ departure time′ then
14: append(RCQ[h], encodeDT (xh,j , xstop id,j ,

xarrival time,j ,W (arrival time),W (departure time),W (stop id)))
15: else
16: append(RCQ[h],′ R′ ◦ xh,j)
17: end if
18: end for
19: end for
20: return: RCRstop times = [RCQ[heads[1]], RCQ[heads[2]], . . . ,

RCQ[heads[m]]]

Algorithm 2 Function encodeINC

Input: current item cur and preceding item prev
Output: code for cur compressed against prev

1: code =′′

2: Let sufcur be the longest suffix of cur, such that sufcur is an integer number,
and prefcur the result of removing sufcur from the end of cur

3: Let sufprev be the longest suffix of prev, such that sufprev is an integer
number, and prefprev the result of removing sufprev from the end of cur

4: if cur ≡ prev then
5: code =′ I′

6: else if prefcur ≡ prefprev and prefcur(0) 6= 0 and prefprev(0) 6= 0
then

7: code =′ D′ ◦ (tonumber(prefcur)− tonumber(prefprev))
8: else
9: code =′ R′ ◦ cur

10: end if
11: return: code

for visualization of the trip. In the following, we describe the
domain-specific compression of all mandatory columns; the
optional columns are compressed with a default compressor.

The general compression algorithm for stop times.txt is
shown in Algorithm 1. The algorithm receives the GTFS
relation Mstop times and window size w as inputs. First, a
referential compression queue is initialized for each column in
Mstop times (this includes mandatory and optional columns).
The queues are stored in the map RCQ, such that RCQ[h]
returns the queue for a column with header h. All queues are
initialized with the elements from the first line of Mstop times;
the symbol ’R’ in front of each element encodes a raw encod-
ing, which means that the code does not contain references
to other elements. Below, we will use additional symbols, to
describe how an item is encoded. Storing these symbols is
necessary in order to ensure decompressibility, and therefore
a lossless compression implementation. After the initialization
of the queues, Algorithm 1 proceeds to compress lines 2–n
from Mstop times. For each column, we define a particular
compression method, which is fine-tuned for the domain
values (as stated by the GTFS specification). We describe these
column-specific compression steps in detail below.

The columns trip id and stop sequence are encoded in-
crementally with respect to the previously occurred item in
the same column, using the function encodeINC shown in
Algorithm 2. The idea for encodeINC is to encode only the
differences between two consecutive items. We have motivated
this referential compression technique in Section IV-A, for the
encoding of sequences such as [1, 2, 3, 4, 5, 6], where storing

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5

Algorithm 3 Function encodeSUCC

Input: current item cur and preceding items in window
[prevw, prevw−q, . . . , prev1]
Output: code for cur compressed against [prevw, prevw−q, . . . , prev1]

1: code =′′

2: pos = −1′
3: for 2 ≤ j ≤ w do
4: if prev1 ≡ prevj then
5: pos = j
6: break
7: end if
8: end for
9: if pos ≥ 0 and prevpos+1 ≡ cur then

10: code =′ M ′

11: else
12: code =′ R′ ◦ cur
13: end if
14: return: code

Algorithm 4 Function encodeAT

Input: current arrival time t, current stop id stop id, preceding items in
arrival time window [arrw, arrw−q, . . . , arr1], preceding items in depar-
ture time window [depw, depw−q, . . . , dep1], and preceding items in stop id
window [stopw, stopw−q, . . . , stop1]
Output: code for t compressed against stop id and the input windows

1: timediff = t− dep1 . Difference between current arrival time and previous
departure (in s)

2: for 2 ≤ j ≤ w do
3: if stop id ≡ stopj−1 and stop1 ≡ stopj and arrj−1 − depj ≡

timediff then
4: return: ′M ′
5: else if stop id ≡ stopj−1 and stop1 ≡ stopj then
6: return: ′D′ ◦ (timediff − (arrj−1 − depj))
7: end if
8: end for
9: return: ′R′ ◦ cur

the delta values between the numbers explicitly. However, the
situation is slightly complicated for trip id: Service providers
often choose mixed identifiers, consisting of textual part (oc-
curring as a prefix of the identifier) and a number. For instance,
trip identifiers for the public transport in Madrid are described
as ’FE0010011’, ’FE0010012’, ’FE0010013’, and so on. Thus,
our implementation of encodeINC splits the ids into a textual
prefix (which can be empty) and a numerical suffix. In the
example for Madrid, the common prefix is ’FE’, while the
numerical suffixes are 0010011, 0010012, and 0010013. The
encoding function distinguishes three cases: 1) the prefixes
and suffixes are identical, respectively (only the symbol ’I’
is stored), 2) the items share a common textual prefix (only
the differences between the numerical values are stored), 3)
no similarities are identified (the raw item is stored). Finally,
the computed code is returned. At decompression time, the
codes are sufficient for decoding: If a ’I’ is obtained, the
item matches the previously decompressed item, if a D is
obtained with a delta value, we can simply add the delta to
the numerical suffix of the previously decoded item, and raw
values are decompressed natively.

Coming back to Algorithm 1, we describe next how the col-
umn stop id is compressed using the function encodeSUCC,
as shown in Algorithm 3. This function finds the most recent
occurrence of the predecessor of cur in the preceding items
window and checks, whether the successor is identical to the
current item cur. If so, then the item cur is encoded with the
symbol ’M’. At decompression time, the item is decoded by
looking up the most recent successor of the predecessor. If the
item cur does not occur in the window or the predecessors do
not match, then cur is encoded as a raw value, using symbol
’R’.

Next, we discuss the compression of arrival time in Algo-
rithm 1. The function encodeAT is called with the following
parameters: Current arrival time, current stop id, and the
histories of arrival time, departure time, and stop id. The

Algorithm 5 Function encodeDT

Input: current departure time t, current stop id stop id, current
arrival time arrival time, preceding items in arrival time window
[arrw, arrw−q, . . . , arr1], preceding items in departure time window
[depw, depw−q, . . . , dep1], and preceding items in stop id window
[stopw, stopw−q, . . . , stop1]
Output: code for t compressed against stop id, arrival time, and the input
windows

1: timediff = t− arrival time . Difference between current departure time
and current arrival time (in s)

2: if timediff ≡ 0 then
3: return: ′A′
4: end if
5: for 2 ≤ j ≤ w do
6: if stop id ≡ stopj depj − arrj ≡ timediff then
7: return: ′M ′
8: else if stop id ≡ stopj then
9: return: ′D′ ◦ (timediff − (depj − arrj))

10: end if
11: end for
12: return: ′S′ ◦ timediff

Algorithm 6 Compression of shapes.txt
Input: to-be-compressed GTFS relation Mshapes with m columns and n rows,
and a windows size w
Output: Referentially compressed GTFS relation RCRshapes

1: Let heads = [h1, h2..., hm]
2: for all h ∈ heads do . Assign a referential compression queue to each head,

with the code being a raw string
3: Let RCQ[h] = [′R′ ◦ xh,1]
4: end for
5: for 2 ≤ j ≤ n do . For a head h, below we denote

[xh,(j−w), . . . , xh,(j−1)])) with W (h)
6: for all h ∈ heads do
7: if h ≡′ shape id′ or h ≡′ shape pt sequence′ then
8: append(RCQ[h], encodeINC(xh,j , xh,j−1))
9: else if h ≡′ shape dist traveled′ then

10: append(RCQ[h], encodeDIST (xh,j , xshape pt lat,j ,
xshape pt lon,j , xshape pt lat,j−1, xshape pt lon,j−1, xh,j−1)

11: else
12: append(RCQ[h],′ R′ ◦ xh,j)
13: end if
14: end for
15: end for
16: return: RCRshapes = [RCQ[heads[1]], RCQ[heads[2]], . . . ,

RCQ[heads[m]]]

compression in function encodeAT , as shown in Algorithm 4,
proceeds as follows. The temporal difference (in seconds)
between the previous departure time at stop 1 and current
arrival time at stop id is computed. The historical window is
traversed to find a recent occurrence of a subtrip from stop 1
to stop id. If the travel time (the difference between depar-
ture time and arrival time) is identical, then a perfect match
is encoded with ’M’. Otherwise, the time difference between
both travel times is encoded as a delta value, using symbol
’D’. If no previous subtrip between stop 1 and stop id is
found, then the arrival time is encoded as a raw value, using
symbol ’R’.

The column departure time is encoded referentially as
shown in Algorithm 5. The function encodeDT is called
with the following parameters: Current departure time, current
stop id, current arrival time, and the histories of arrival time,
departure time, and stop id. The algorithm finds the most
recent historical description of a stop at stop id. If the idle
time at the stop (difference between departure time and ar-
rival time) is identical, then the time is encoded as a perfect
match ’M’. Otherwise, if the time does not match, the idle time
is encoded referentially. If there is no previous description of
a stop at stop id in the window, the departure time is encoded
referentially towards the current arrival time.

All remaining columns are encoded with raw values ini-
tially. In the end, all referential compression queues are
compressed with a standard entropy encoder.

2) Compression of shapes.txt: The file shapes.txt consists
of four or more columns. The four mandatory columns are:

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 6

Algorithm 7 Function encodeDIST

Input: current item cur, latitudes lat1,lat2, longitudes lon1,lon2, and previ-
ous distance dist
Output: code for cur compressed against prev

1: Let a = sin2(
lat2−lat1

2) + cos(lat1) ∗ cos(lat2) ∗ sin2(
lon2−lon1

2)
2: Let c = 2 ∗ atan2(

√
a,
√
1− a)

3: Let stepKM = c ∗ 6, 371
4: Let stepMI = c ∗ 3, 959
5: if dist + stepKM ≡ cur then
6: return: ′K′
7: else if dist + stepMI ≡ cur then
8: return: ′M ′
9: else if dist + stepKM

1000 ≡ cur then
10: return: ′E′
11: else if dist + stepMI

5280 ≡ cur then
12: return: ′F ′
13: else
14: return: ′R′ ◦ cur
15: end if

Algorithm 8 Compression of trips.txt
Input: to-be-compressed GTFS relation Mtrips with m columns and n rows
Output: Referentially compressed GTFS relation RCRtrips

1: Let heads = [h1, h2..., hm]
2: for all h ∈ heads do . Assign a referential compression queue to each head,

with the code being a raw string
3: Let RCQ[h] = [′R′ ◦ xh,1]
4: end for
5: for 2 ≤ j ≤ n do
6: for all h ∈ heads do
7: if h ∈ {′route id′,′ service id′,′ trip id′,′ shape id′,
′block id′} then

8: append(RCQ[h], encodeINC(xh,j , xh,j−1))
9: else

10: append(RCQ[h],′ R′ ◦ xh,j)
11: end if
12: end for
13: end for
14: return: RCRtrips = [RCQ[heads[1]], RCQ[heads[2]], . . . ,

RCQ[heads[m]]]

shape id (uniquely identifying a shape which is modeled),
shape pt lat (describes the latitude for a single point of the
shape), shape pt lon (describes the longitude for a single
point of the shape), and shape pt sequence (an increasing
number, identifying the order of points along a shape). A
fifth column, shape dist traveled, is optional and contains
information about the distance between two consecutive points
of a shape. In the following, we describe the domain-specific
compression of three columns in shapes.txt; all other columns
are compressed with a default compressor.

The general compression algorithm for shapes.txt is shown
in Algorithm 6. The overall structure is similar to that
of Algorithm 1 for compressing stop times.txt. Therefore,
we only describe the differences here. The two columns
shape id and shape pt sequence are encoded incrementally
with respect to previously occurred item in the same column,
reusing the function encodeINC shown in Algorithm 2.
The column shape dist traveled is encoded with the function
encodedDIST and is explained below; all remaining columns
are encoded with raw values.

The encoding of column shape dist traveled deserves ex-
planation. This value shape dist traveled represents the real
distance traveled along the route so far, from the first shape
point. The major problem with the definition of this column
(in the GTFS specification) is twofold: First, it is completely
left open, which units are used to model the distance (the
GTFS reference suggests feet and kilometers as examples).
Second, it is not stated, whether real distance refers to the
distance traveled by the public transportation vehicle or to the
line-by-sight distance. However, since the distance is (from a
database point of view) often redundant, given information
about previously occurred latitude/longitude points, we try
to estimate the distance (and the unit) of this column and

encode the deviation as a delta, whenever possible, using
the Haversine formula [35]. The implementation is defined in
Algorithm 7. We probe four different units (kilometer, miles,
meters, and feet): If any of them represents the actual increase
in distance, we encode this information with a single symbol,
since the distance can be easily recomputed from the previous
distance and latitude/longitude values. Otherwise, if none of
the units fits, we encode the shape dist traveled as a raw
value.

All remaining columns are encoded with raw values ini-
tially. In the end, all referential compression queues are
compressed with a standard entropy encoder.

3) Compression of trips.txt: The file trips.txt consists of
three or more columns. The three mandatory columns are:
route id (uniquely identifying a modeled route), service id
(describes the set of dates when a service is available), and
trip id (a unique identifier of the trip). There are several op-
tional columns, for instance, trip headsign (encoding the text
that represents the trip’s destination), shape id (associating
the trip to shape describing the trip), and other columns for
identifying wheelchair accessibility and bike allowance. In the
following, we describe the domain-specific compression of five
columns. Additional columns, which may be added by service
providers, are compressed with a default compressor.

The general compression algorithm for trips.txt is shown
in Algorithm 8. The overall structure is similar to that of
Algorithm 1 for compressing stop times.txt. Thus, only the
differences are described. In general, file trips.txt mainly
consists of identifiers, These identifiers are efficiently com-
pressed by our efficient identifier compression technique from
Algorithm 2, given they are sorted (which is often the case).
The remaining columns are stored using raw values. Most of
these remaining columns have very short values (often only
one byte), where referential compression does not pay off. In
the end, all referential compression queues are compressed
with a standard entropy encoder.

4) Compression of other GTFS relations: All other files are
compressed using a standard compression algorithm. These
files are usually orders of magnitude smaller than the three
previously discussed files and therefore do not dominate the
overall size of the compressed GTFS dataset. Moreover, many
of the remaining files are less structured, which makes it
difficult to design an efficient compression algorithm.

C. Overall comments on the implementation

First, our technique requires an implementation of the data
structure referential compression queue. Since this is essen-
tially a sliding window, the implementation is rather easy. The
critical part is an efficient look-up of previously seen elements.
In our implementation, we have used a double-ended queue
(deque in c++). Recently seen elements are stored in the queue
and the length of the queue is restricted to the sliding window
size. In general, a hash-based implementation might further
speed up the process of finding previously seen elements, by
avoiding repetitive traversals of the queue.

The implementation of our encoding functions is straight-
forward, given their algorithmic descriptions and does not pose
any particular challenges. It should be noted that we used p7zip
(http://www.7-zip.de/download.html) as a standard entropy
encoded for the compression of pre-compressed columns. The
compression tool was used with its default parameters.

GTFSCompress fits the life cycle of a GTFS dataset as
follows: 1) The dataset for a region/temporal period is created.

http://www.7-zip.de/download.html

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7Sheet1

Dataset Uncompressed size (MB) zip-compressed size (MB) Number of routes Number of trips Number of stops Number of shapes

BERLIN 195 27 1,452 220,275 13,159 0 7.1807312

BOSTON 272 35 217 176,169 8,399 1,055 7.80269938

CHICAGO 398 50 134 91,170 11,707 1,696 7.95006694

MADRID 100 14 207 76,429 4,655 411 7.3429226

MILANO 345 27 155 34,988 4,866 754 12.8646742

MONTREAL 276 47 222 148,738 9,545 1,022 5.92454922

PARIS 702 98 1,083 568,655 26,965 0 7.15763887

PORTLAND 168 24 91 33,147 6,919 1,237 7.05882521

SANFRANCISCO 51 8 84 28,086 3,596 498 6.592069

WASHINGTON 116 19 298 50,420 10,840 2,235 6.07831172

Page 1

TABLE I: Overview on the ten GTFS datasets used in this study. Minimum and maximum values are highlighted in bold.
PARIS is the largest dataset (at 702 MB), with the highest number of trips and stops. SANFRANCISCO is the smallest dataset
in our study (at 51 MB).

Dataset BERLIN BOSTON CHICAGO MADRID MILANO MONTREAL PARIS PORTLAND SANFRANCISCO WASHINGTON

agency.txt 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 #BEZUG!

calendar.txt 0.079 0.017 0.005 0.000 0.000 - 0.284 - 0.000 - 0.005 0.284 #BEZUG!

calendar_dates.txt 2.576 0.045 0.003 0.000 0.028 0.003 1.564 0.009 0.000 0.008 0.009 2.576 #BEZUG!

frequencies.txt - 0.001 0.000 2.569 - 0.339 - - - - 0.170 2.569 #BEZUG!

route_xref.txt - - - - - - - - - 3.227 3.227 3.227 #BEZUG!

routes.txt 0.061 0.013 0.013 0.026 0.014 0.016 0.101 0.006 0.003 0.008 0.014 0.101 #BEZUG!

shapes.txt - 16.255 31.963 1.919 7.208 1.871 - 34.062 2.090 24.919 11.732 34.062 #BEZUG!

stop_features.txt - - - - - - - 1.144 - - 1.144 1.144 #BEZUG!

stop_times.txt 179.722 237.147 358.442 90.570 313.874 266.413 672.345 129.469 47.575 85.134 208.435 672.345 #BEZUG!

stops.txt 0.817 0.635 1.330 0.674 0.533 1.060 2.771 1.156 0.212 0.734 0.776 2.771 #BEZUG!

transfers.txt 0.364 0.001 0.003 - 0.000 - 1.705 0.051 - - 0.027 1.705 #BEZUG!

trips.txt 11.168 17.801 5.701 3.038 22.963 5.745 23.258 1.094 1.307 1.983 5.723 23.258 #BEZUG!

Other files in dataset 0.000 0.000 0.019 0.000 0.000 0.005 0.000 0.006 0.009 0.043

TABLE II: Uncompressed file sizes in MByte for each file in the ten GTFS datasets. Files that are not included in a dataset
are marked with ’-’. The three largest files (average size) are highlighted in bold. The largest file is stop times.txt (often
comprising 90% of a GTFS dataset), followed by trips.txt and shapes.txt.

2) GTFSCompress is used to compress the file initially on
the hard disk. 3) Whenever the file needs to be accessed,
GTFSCompress is used to decompress the dataset into main
memory and make it accessible for other applications. 4) Once
the application does not need access to the dataset anymore,
the uncompressed dataset is removed from main memory,
while the compressed dataset remains on hard disk.

V. EVALUATION

We perform an evaluation on ten real-world GTFS datasets
for different regions. The datasets are described in Sec-
tion V-A. We evaluate our implementation GTFSCompress
against standard compression tools in Section V-B.

A. Datasets
For the evaluation we selected ten datasets from the

GTFS feeds at GTFS-Data-Exchange4. Our datasets cover
small cities to larger metropolitan areas: BERLIN, BOSTON,
CHICAGO, MADRID, MILANO, MONTREAL, PARIS,
PORTLAND, SANFRANCISCO, and WASHINGTON. We
show basic statistics about the datasets in Table I. The largest
(uncompressed) dataset is PARIS, which needs more than
700 MB of storage. The smallest dataset in our collection is
SANFRANCISCO (at around 50 MB).

4http://www.gtfs-data-exchange.com

In Table II, we compare the size of components from the
GTFS datasets for the ten regions. Overall, it can be concluded
that the file size for a single component (see Table I for the
total size of the datasets) can be tremendously high. The feed
for PARIS, for instance, uses approx. 700 MB of storage; yet
more than 90% of the storage is induced by the file stop times,
which encodes schedules for stops at trip level. Similarly, the
required storage for most datasets is dominated by the storage
for stop times.txt. The second largest components are trips.txt
and shapes.txt. These three components together make up for
about 98% of all data in the evaluation datasets. Therefore, in
Section IV we have focused on a customized compression of
these three components.

B. GTFSCompress
The efficiency of our referential compression queues de-

pends on how much memory is used for the referential com-
pression process: A larger window usually implies a higher
compression ratio, but also higher compression times and more
memory usage during compression and decompression. In
Fig. 1 (left), we show the compression ratio for all ten datasets
with a varying window size. The compression ratio clearly
increases with window size. For window sizes smaller than 50–
100, the compression ratio becomes significantly smaller. Win-
dow sizes above 1000 often do not increase the compression
ratio anymore. In Fig. 1 (right), we present the compression

http://www.gtfs-data-exchange.com

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 8

5 10 50 500 5000 50000

40
60

80
10

0
14

0

● ●

●

●
● ● ● ● ●

Window size

C
om

pr
es

si
on

 r
at

io

5 10 50 500 5000 50000

0
1

2
3

4
5

6
7

● ●

● ●
● ●

●

●

●

Window size

C
om

pr
es

si
on

 s
pe

ed
 (

M
B

/s
)

●

●

BERLIN
BOSTON

CHICAGO
MADRID

MILANO
MONTREAL

PARIS
PORTLAND

SANFRANCISCO
WASHINGTON

Fig. 1: Compression ratio (left) and compression speed (right) with varying window size (5–50000). An increasing window
size allows for higher compression, but comes at the price of lower compression speeds. Increasing the window size beyond
1000 lines does not increase compression ratios significantly.

Dataset zip bzip2 LZMA2 GTFSCompress100 GTFSCompress1000 zip bzip2 LZMA2 GTFSCompress100 GTFSCompress1000

BERLIN 8.77 12.77 21.97 122.20 127.10 4.44 5.37 1.77 3.68 3.35

BOSTON 9.24 13.54 25.46 85.92 92.06 5.40 5.34 2.24 3.86 3.01

CHICAGO 9.09 9.66 21.33 41.43 52.98 7.17 5.37 3.09 3.20 1.89

MADRID 7.22 7.26 14.60 75.71 76.72 4.58 5.32 1.45 3.29 3.15

MILANO 13.83 17.77 31.33 144.50 145.59 10.38 6.01 4.20 7.12 6.35

MONTREAL 7.38 9.49 14.56 55.77 60.71 5.22 5.51 1.60 3.61 1.41

PARIS 8.45 11.45 17.02 92.39 96.94 5.32 5.53 1.85 3.86 2.07

PORTLAND 7.93 9.29 21.76 46.57 50.15 6.61 5.62 2.64 3.32 3.21

SANFRANCISCO 7.29 8.40 24.14 103.21 110.44 4.81 5.59 1.82 3.57 3.35

WASHINGTON 7.00 8.24 19.97 48.28 48.65 4.93 5.43 1.51 3.12 2.80

Average 8.62 10.79 21.21 81.60 86.13 5.88 5.51 2.22 3.86 3.06

Dataset zip bzip2 LZMA2 GTFSCompress100 GTFSCompress1000

BERLIN 4.44 5.37 1.77 3.68 3.35

BOSTON 5.40 5.34 2.24 3.86 3.01

CHICAGO 7.17 5.37 3.09 3.20 1.89

MADRID 4.58 5.32 1.45 3.29 3.15

MILANO 10.38 6.01 4.20 7.12 6.35

MONTREAL 5.22 5.51 1.60 3.61 1.41

PARIS 5.32 5.53 1.85 3.86 2.07

PORTLAND 6.61 5.62 2.64 3.32 3.21

SANFRANCISCO 4.81 5.59 1.82 3.57 3.35

WASHINGTON 4.93 5.43 1.51 3.12 2.80

Average 5.88 5.51 2.22 3.86 3.06

Compression ratio Compression speed

TABLE III: Comparison of compression ratio between GTFSCompress and standard compression tools. The highest compression
ratio and the highest compression speed are marked in bold. GTSCompress1000 always receives the highest compression ratios,
followed by GTFSCompress100. The standard compressor zip allows for the fastest compression. GTFSCompress instances
are usually around 50–70% slower than zip.

speed for all ten datasets with a varying window size. With
an increasing window size, the compression speed gradually
reduces, since more and more historical items have to be
checked during the compression process. The compression
speed is stable for window sizes smaller than 100–1000. In
the following, we test two instantiations of GTFSCompress:
One with window size 100 and another one with window size
1000. Still, in our implementation, the window size can be
chosen by the user.

We compare GTFSCompress against three compression
tools as implemented in 7zip5:
• zip: Based on LZ77 algorithm (7za a -tzip).
• bzip2: Based on Burrows-Wheeler Transformation (7za

a -tbzip2).
• LZMA2: Improved and optimized version of LZ77 algo-

rithm (7za a -t7z -m0=LZMA2). In LZMA2, compression
is improved over LZ77 by using a longer history buffer
(up to 4 GB), optimal parsing, shorter codes for recently
repeated matches, literal exclusion after matches, and
arithmetic coding [36].

The main results of our experiments are reported in Ta-
ble III. GTFSCompress, tested with window size 100 and
1000, clearly outperforms the standard compression tools
regarding compression ratio. Compared to zip, the standard

5http://www.7-zip.org/

format for compressing GTFS datasets, the compression ratio
of GTFSCompress is approx. one order of magnitude higher
(86.1 compared to 8.62). The difference with other standard
compression tools is still in the order of 4–8 times better
compression. Remarkably, GTFSCompress1000 consistently
obtains the highest compression ratios for all datasets in our
study.

Regarding the compression speed, GTFSCompress is slower
than other standard compression tools. The fastest compressor
is zip, followed by bzip2. However, one should keep in mind
that the process of compressing a dataset is a one-time event:
Usually, once a dataset is compressed, it is transferred through
a network to clients and stored there for further use. Therefore,
we think that the advantage of GTFSCompress in compression
ratio outweighs the slower compression speed. In addition,
we would like to emphasize that our implementation, which
is available for free academic use, was programmed in a
clear way (to correctly present implementations of algorithms
proposed in this paper), without tricks for optimization. We
think that the compression speed of GTFSCompress can be
further improved by using standard data structures, e.g. bloom
filter, to check whether searching a previously occurring item
is useful or not. Furthermore, a considerable amount of time is
spent on parsing the comma-separated files; a process which
could be implemented more efficiently.

In Figure 2, we report decompression experiments for our

http://www.7-zip.org/

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

B
E

R
LI

N

B
O

S
TO

N

C
H

IC
A

G
O

M
A

D
R

ID

M
IL

A
N

O

M
O

N
T

R
E

A
L

PA
R

IS

P
O

R
T

LA
N

D

S
A

N
F

R
A

N
C

IS
C

O

W
A

S
H

IN
G

TO
N

0

100

200

300

400

500
D

ec
om

pr
es

si
on

 s
pe

ed
 (

M
B

/s
)

x x

x

x

x

x

x

x

x

x xxx x x

x

x

x

x

x

x

x

x x
x x

x

x

x

x

x

xxx

x

x

x

x

x

x

x xx x x

x

x

x

x

x

x xx x

x

x

x

x

x

x

x
x

x

x

x

x

x

x

x xx
xx
x xx

x

x

x

x

x

x

x

x x

x
x x

x

x

x

x

x

x

x

x
x

x
x

x

x

x

0.01 1.00 100.00

0.
00

5
0.

02
0

0.
05

0
0.

20
0

0.
50

0
Raw size (MB)

D
ec

om
pr

es
si

on
 ti

m
e

(s
)

x x

x

x

x

x

x

x

x

xxxxxx

x

x

x

x

x

x

x

xxxx

x

x

x

x

x

xxx

x

x

x

x

x

x

xxxx x

x

x

x

x

x

xxxx

x

x

x

x

x

x

x
x

x

x

x

x

x

x

xxx
xx
xxx

x

x

x

x

x

x

x

xx

x
xxx

x

x

x

x

x

x

x
x

x
x

x

x

x

0.01 1.00 100.00

0.
00

5
0.

02
0

0.
05

0
0.

20
0

0.
50

0

Compression time (s)

D
ec

om
pr

es
si

on
 ti

m
e

(s
)

Fig. 2: Decompression of GTFS datasets with GTFSCompress1000. Left: Decompression speed for datasets. Middle:
Decompression time increases with raw size of the file in the dataset. Right: Decompression time correlates with compression
time, but is up to 100 times faster.

datasets. In Figure 2(left), the decompression speed is between
200 and 500 MB/s. In our experiments, the largest dataset,
PARIS, can be decompressed within 1.5 seconds using our
compression algorithm, all other datasets can be accessed
within a single second. In Figure 2(middle), we plot the
decompression speed against the raw size of files inside the
datasets. It can be seen that the decompression time largely
depends on the raw size of the input, independent of the file
type. Similarly, as shown in Figure 2(right), the decompression
time strongly correlates with compression time, only that the
decompression is faster by approx. two orders of magnitude.
This is a valuable property for read-only access to GTFS
datasets, where data is compressed once but decompressed
frequently.

VI. CONCLUSIONS

We developed a new technique for lossless compression of
public transportation schedules encoded in GTFS feeds. Stan-
dard compression tools only achieve very low compression
ratios, between 8–20, depending on the chosen compression
scheme. The major reason for poor compression performance
is that these tools cannot efficiently identify and exploit
redundancies in the data. In this work we have introduced the
algorithms for GTFSCompress, which is based on the idea of
compressing columns in GTFS relations referentially against
other columns, leading to a data structure called referential
compression queues. Our experiments with ten real-world GTS
datasets show that transportation schedules can actually be
compressed up to a factor of 145 (86.13 in average). We think
that our work on GTFSCompress makes it feasible to store
large amounts of transit schedules on commodity hardware.
The applicability of GTFSCompress is summarized as follows:

1) The compression speed is lower than that of the best
standard compressors. However, since compression is
often a one-time event, we believe that this is not a severe
limitation in practice.

2) When changing the format significantly, e.g. changing the
data model from relational to XML, our method needs to
be adapted; while standard compression tools can still
work out of the box. As long as the data model remains

the same, i.e. with one relation per file, our compression
method does not need adaptations.

3) The overhead for adapting our algorithms to different
datasets is zero, as long as the underlying data represen-
tation is a relational data model. If previously unknown
columns are added to feeds, they are compressed by a
default column-wise compressor. Moreover, all column-
compression algorithms developed in this paper fall back
to encode raw values, in case the current value cannot
be encoded efficiently (or is unexpected). Since we post-
process the output with an entropy encoder, the results
are still well compressed. This makes our approach much
more applicable than the techniques in original reference
[34], which needs many adaptions and user interventions
in case of changing the GTFS files. Compared to that
method, our method simply works out of the box.

We discuss several directions for future work. First, the sort
order of tuples in GTFS relations can have a significant impact
on the compression ratio. In this study, we did not change the
order of tuples, in order to achieve true lossless compression.
Additional experiments could be performed by compressing
different orderings. Second, our analysis revealed that one
major limitation of GTFSCompress is the compression of
latitude/longitude pairs. It should be possible to incorporate
specific compression tools for geo-coordinates [37], [38] to
further increase compression ratios. Third, using the tech-
niques presented in this paper, it might become possible to
manage all historical public transportation schedules for many
regions efficiently in a main memory database for information
retrieval. This can lead towards new insights and lays an
important foundation for handling big transportation data.

REFERENCES

[1] T. Litman, “Evaluating public transit benefits and costs,” Victoria Trans-
port Policy Institute, vol. 65, 2011.

[2] M. L. Anderson, “Subways, strikes, and slowdowns: The impacts of
public transit on traffic congestion,” National Bureau of Economic
Research, Tech. Rep., 2013.

[3] D. He, H. Liu, K. He, F. Meng, Y. Jiang, M. Wang, J. Zhou, P. Calthorpe,
J. Guo, Z. Yao et al., “Energy use of, and co 2 emissions from
chinas urban passenger transportation sector–carbon mitigation scenarios
upon the transportation mode choices,” Transportation Research Part A:
Policy and Practice, vol. 53, pp. 53–67, 2013.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 10

[4] T. Litman, “Comprehensive evaluation of energy conservation and
emission reduction policies,” Transportation Research Part A: Policy
and Practice, vol. 47, pp. 153–166, 2013.

[5] B. E. Saelens, A. Moudon, B. Kang, P. Hurvitz, and C. Zhou, “Higher
physical activity is directly related to public transit use,” Am J Public
Health, 2013.

[6] S. Gisdakis, V. Manolopoulos, S. Tao, A. Rusu, and P. Papadimitratos,
“Secure and privacy-preserving smartphone-based traffic information
systems,” Intelligent Transportation Systems, IEEE Transactions on,
vol. 16, no. 3, pp. 1428–1438, June 2015.

[7] J. Wong, “Leveraging the general transit feed specification for efficient
transit analysis,” Transportation Research Record: Journal of the Trans-
portation Research Board, no. 2338, pp. 11–19, 2013.

[8] Google, “General Transit Feed Specification,” 2013. [Online]. Available:
https://developers.google.com/transit/gtfs/

[9] A. Thiagarajan, J. Biagioni, T. Gerlich, and J. Eriksson, “Cooperative
transit tracking using smart-phones,” in Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems. ACM, 2010, pp.
85–98.

[10] S. J. Barbeau, P. L. Winters, N. L. Georggi, M. A. Labrador, and
R. Perez, “Travel assistance device: utilising global positioning system-
enabled mobile phones to aid transit riders with special needs,” Intelli-
gent Transport Systems, IET, vol. 4, no. 1, pp. 12–23, 2010.

[11] J. Zhao, M. Frumin, N. Wilson, and Z. Zhao, “Unified estimator for
excess journey time under heterogeneous passenger incidence behavior
using smartcard data,” Transportation Research Part C: Emerging
Technologies, vol. 34, no. 0, pp. 70 – 88, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0968090X13001101

[12] A. Carrel, P. S. Lau, R. G. Mishalani, R. Sengupta, and J. L. Walker,
“Quantifying transit travel experiences from the users perspective with
high-resolution smartphone and vehicle location data: Methodologies,
validation, and example analyses,” Transportation Research Part C:
Emerging Technologies, no. 0, pp. –, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0968090X15001060

[13] A. Owen and D. M. Levinson, “Modeling the commute mode share
of transit using continuous accessibility to jobs,” Transportation
Research Part A: Policy and Practice, vol. 74, no. 0, pp. 110 – 122,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0965856415000191

[14] B. Ferris, K. Watkins, and A. Borning, “Onebusaway: results from
providing real-time arrival information for public transit,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2010, pp. 1807–1816.

[15] H. Bast, P. Brosi, and S. Storandt, “TRAVIC: a visualization client
for public transit data,” in Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic Information
Systems, Dallas/Fort Worth, TX, USA, November 4-7, 2014, 2014,
pp. 561–564. [Online]. Available: http://doi.acm.org/10.1145/2666310.
2666369

[16] T. Szincsak and A. Vagner, “Data Structure to Store GTFS Data
Efficiently on Mobile Devices,” JOURNAL OF COMPUTER SCIENCE
AND SOFTWARE APPLICATION, vol. 1, no. 1, 2014.

[17] J. Makler, M. Harvey, S. Callas, K. Tufte, and R. Peterson, “Arriving
next on track 1: Online archive for geospatial transit performance data,”
Transportation Research Record: Journal of the Transportation Research
Board, no. 2442, pp. 37–43, 2014.

[18] H. Plattner, “A common database approach for OLTP and OLAP using
an in-memory column database,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2009,
Providence, Rhode Island, USA, June 29 - July 2, 2009, 2009, pp. 1–2.
[Online]. Available: http://doi.acm.org/10.1145/1559845.1559846

[19] K. A. Tufte, R. L. Bertini, and M. Harvey, “Evolution and usage of
the portal data archive: A ten-year 2 retrospective 3,” in Transportation
Research Board 94th Annual Meeting, no. 15-4761, 2015.

[20] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on Information Theory, vol. IT-23,
no. 3, pp. 337–343, May 1977.

[21] A. Moffat, “Implementing the PPM data compression scheme,” IEEE
Transactions on Communications, vol. COM-38, no. 11, pp. 1917–1921,
Nov. 1990.

[22] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compres-
sion algorithm,” 1994.

[23] S. Wandelt, U. Leser et al., “Adaptive efficient compression of genomes.”
Algorithms for Molecular Biology, vol. 7, no. 30, pp. 1–9, 2012.

[24] D. Le Gall, “Mpeg: A video compression standard for multimedia
applications,” Communications of the ACM, vol. 34, no. 4, pp. 46–58,
1991.

[25] J. Muckell, J.-H. Hwang, V. Patil, C. T. Lawson, F. Ping, and S. S. Ravi,
“SQUISH: An Online Approach for GPS Trajectory Compression,”
in COM.Geo. New York, NY, USA: ACM, 2011, pp. 13:1–13:8.
[Online]. Available: http://doi.acm.org/10.1145/1999320.1999333

[26] S. Wandelt and X. Sun, “Efficient compression of 4d-trajectory data
in air traffic management,” Intelligent Transportation Systems, IEEE
Transactions on, vol. 16, no. 2, pp. 844–853, April 2015.

[27] V. V. Makkapati and P. R. Mahapatra, “Extreme compression of weather
radar data,” Geoscience and Remote Sensing, IEEE Transactions on,
vol. 45, no. 11, pp. 3773–3783, 2007.

[28] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, “Compressing
historical information in sensor networks,” in Proceedings of the 2004
ACM SIGMOD international conference on Management of data. ACM,
2004, pp. 527–538.

[29] D. S. Batory, “On Searching Transposed Files,” ACM Trans. Database
Syst., vol. 4, no. 4, pp. 531–544, Dec. 1979. [Online]. Available:
http://doi.acm.org/10.1145/320107.320125

[30] S. Khoshafian, G. P. Copeland, T. Jagodis, H. Boral, and P. Valduriez,
“A Query Processing Strategy for the Decomposed Storage Model,” in
Proceedings of the Third International Conference on Data Engineering.
Washington, DC, USA: IEEE Computer Society, 1987, pp. 636–643.
[Online]. Available: http://dl.acm.org/citation.cfm?id=645472.655555

[31] P. A. Boncz and M. L. Kersten, “MIL Primitives for Querying a
Fragmented World,” The VLDB Journal, vol. 8, no. 2, pp. 101–119, Oct.
1999. [Online]. Available: http://dx.doi.org/10.1007/s007780050076

[32] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-oriented
database systems,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1664–1665,
Aug. 2009. [Online]. Available: http://dx.doi.org/10.14778/1687553.
1687625

[33] S. Deorowicz and S. Grabowski, “Compression of DNA sequence reads
in FASTQ format,” Bioinformatics, vol. 27, no. 6, pp. 860–862, 2011.
[Online]. Available: http://bioinformatics.oxfordjournals.org/content/27/
6/860.abstract

[34] S. Golomb, “Run-length encodings (corresp.),” Information Theory,
IEEE Transactions on, vol. 12, no. 3, pp. 399–401, Jul 1966.

[35] R. W. Sinnott, “Virtues of the Haversine,” Sky and Telescope, vol. 68,
no. 2, pp. 159+, 1984.

[36] M. Mahoney, Data Compression Explained, 2014. [Online]. Available:
http://mattmahoney.net/dc/dce.html

[37] P. Cudre-Mauroux, E. Wu, and S. Madden, “Trajstore: An adaptive
storage system for very large trajectory data sets.” in ICDE. IEEE,
2010, pp. 109–120. [Online]. Available: http://dblp.uni-trier.de/db/conf/
icde/icde2010.html#Cudre-MaurouxWM10

[38] M. Chen, M. Xu, and P. Franti, “Compression of gps trajectories using
optimized approximation,” in Pattern Recognition (ICPR), 2012 21st
International Conference on, Nov 2012, pp. 3180–3183.

Sebastian Wandelt works as a professor at the
School of Electronic and Information Engineering
at Beihang University. He received a Ph.D. degree
in computer science from Hamburg University of
Technology in 2011. His research interests are scal-
able data management, compressing/searching large
collections of objects, and Semantic Web reasoning
techniques.

Xiaoqian Sun is an associate professor with the
School of Electronic and Information Engineering
at Beihang University. She obtained her Ph.D. in
Aerospace Engineering from Hamburg University of
Technology in 2012. Her research interests mainly
include air transportation networks, multi-modal
transportation, and multi-criteria decision analysis.

Yanbo Zhu is a senior scientist at Beihang Uni-
versity and the vice-president of the Aviation Data
Communication Corporation. He obtained his Ph.D.
degree in Electronics Engineering from Beihang
University in 2009. His main research interests are
CNS (Communication, Navigation, Surveillance),
ATM (Air Traffic Management), airlines operation
services and support.

https://developers.google.com/transit/gtfs/
http://www.sciencedirect.com/science/article/pii/S0968090X13001101
http://www.sciencedirect.com/science/article/pii/S0968090X15001060
http://www.sciencedirect.com/science/article/pii/S0965856415000191
http://www.sciencedirect.com/science/article/pii/S0965856415000191
http://doi.acm.org/10.1145/2666310.2666369
http://doi.acm.org/10.1145/2666310.2666369
http://doi.acm.org/10.1145/1559845.1559846
http://doi.acm.org/10.1145/1999320.1999333
http://doi.acm.org/10.1145/320107.320125
http://dl.acm.org/citation.cfm?id=645472.655555
http://dx.doi.org/10.1007/s007780050076
http://dx.doi.org/10.14778/1687553.1687625
http://dx.doi.org/10.14778/1687553.1687625
http://bioinformatics.oxfordjournals.org/content/27/6/860.abstract
http://bioinformatics.oxfordjournals.org/content/27/6/860.abstract
http://mattmahoney.net/dc/dce.html
http://dblp.uni-trier.de/db/conf/icde/icde2010.html#Cudre-MaurouxWM10
http://dblp.uni-trier.de/db/conf/icde/icde2010.html#Cudre-MaurouxWM10

	Introduction
	Related Work
	General Transit Feed Specification
	Compression of GTFS
	Formal compression model
	Implementation
	Compression of stop_times.txt
	Compression of shapes.txt
	Compression of trips.txt
	Compression of other GTFS relations

	Overall comments on the implementation

	Evaluation
	Datasets
	GTFSCompress

	Conclusions
	References
	Biographies
	Sebastian Wandelt
	Xiaoqian Sun
	Yanbo Zhu

