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Abstract: Air transport delays are a major source of direct and opportunity costs in modern societies,1

being this problem especially important in the case of China. In spite of this, our knowledge on delay2

generation is mostly based on intuition, and the scientific community has hitherto devoted little3

attention to this topic. We here present the first data-driven systemic study of air transport delays in4

China, of their evolution and causes, based on 11 million flights between 2016 and 2018. A significant5

fraction of the delays can be explained by few variables, e.g., weather conditions and traffic levels, the6

most important factors being the presence of thunderstorms and the season of the year. Remaining7

delays can often be explained by en-route weather phenomena or by reactionary delays. This study8

contributes towards a better understanding of delays and their prediction through a data-driven9

methodology, leveraging on statistics and data mining concepts.10
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1. Introduction12

The air transport system of a country is a fundamental infrastructure for ensuring citizens’13

long-distance mobility and an important part of the country’s economic growth. This is true particularly14

for an extensive country such as China, where it is infeasible to connect all parts of the country15

efficiently by ground transportation only. The rapid expansion of the air Chinese transportation16

system poses an inherent challenge: daily operations suffer from a limited availability of airspace17

resources, due to a combination of multiple factors [1], whose interactions have not been analysed in18

the literature so far. This has a major impact on the passengers’ experience and social welfare [2], at it19

has been estimated that a 31.6% of the flights were delayed in 2015 [3]. Except from the direct impact20

on passengers, there are also impacts on airlines, in terms of fines and operational costs [4,5], as well21

as the environment, in terms of increased fuel consumption or emissions of an inefficient system [5].22

Accordingly, improving the understanding and prediction of delay is in the best interest of many23

stakeholders in air transportation, including air navigation service provides, network managers, as24

well as passengers. In light of the previous considerations, it is not surprising that a substantial number25

of research works have been focused on delay analysis. These can roughly be categorised in two groups:26

analysis of individual delays, and analysis of the resulting network effects. Within the former one,27

most works have focused on Europe (see, for instance, [6–8]) and US [9–13], mainly due to the larger28

data availability. On the other hand, the propagation of delays [14] is usually represented through29
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networks of airports (see [15] for a review), in which links describe the circumstances/likelihood of30

propagation between pairs of airports [16–19]. Note that the picture is further made more complex by31

the presence of multiple definitions for delays, e.g., departure delay, en-route delay, or arrival delays;32

additionally, delays can be estimated for aircraft or individual passengers [17]. Most studies, including33

the present one, focus on landing delays for flights, calculated as the difference between the actual and34

scheduled arrival time of a flight, as these are the most relevant from the passenger’s perspective.35

When comparing the causes for air transportation delays throughout the world, China stands36

out as a special case, as here delays are mainly caused by a limited aerospace for civil aviation (as37

opposed to, for instance, airport capacity) [20]. While a few research works focusing on the study of38

delays can be found, e.g. [1,21–23], a framework for describing the evolution and causes of delays is39

hitherto missing in the literature, possibly due to a lack of public operational data sets. In addition,40

detailed aggregated information about the cause of delays, and in some cases about individual flights,41

are easily obtainable in Europe and US - respectively through the Eurocontrol’s Network Operations42

Portal and the US Bureau of Transportation Statistics’ RITA. Yet, this does not hold in China, for which43

only annual statistics are published by CAAC.44

The objective of our research is to bridge this gap, and present a comprehensive study of the45

evolution of air transport delays in China between May 1st, 2016 to October 31st, 2018. Based on46

the operational data, we are interested in identifying the major factors driving delays in the Chinese47

domestic air transportation system. Our analysis is organised around two main topics. We firstly48

describe the temporal evolution of delay statistical metrics, in order to understand if and how much49

the system predictability has increased in the last year. Secondly, we further assess the presence50

of relationships between weather conditions and delays, by means of several statistical and data51

mining tests, to understand whether the former ones have a significant impact on the dynamics of the52

system. Through our data-driven experiments, we find that a considerable fraction of the delays can53

be predicted rather well, provided some input variables, such as weather conditions and traffic levels.54

Notably, the largest factors appearing with the occurrence of delays are the presence of thunderstorms55

and season of the year. This study contributes towards understanding the generation of delays and56

prediction of delays in air transportation systems and, eventually, should lead to novel strategies for57

improving passengers’ experience.58

The remaining part of this study is structured as follows. Section 2 summarises the state-of-the-art59

delay analysis in air transportation networks. Section 3 describes the flight data and methods used in60

our study for delay characterisation and prediction. Section 4 presents statistical analysis on the flight61

data used in this study, with a focus on temporal evolution and identification of seasonality. Section 562

identifies the relevance of weather phenomena for the occurrence and predictability of delays in the63

Chinese air transportation system. Section 6 concludes our study and presents some directions for64

future work.65

2. Literature review66

Many analytical models have been proposed to study flight delays. [24] developed a delay tree67

to quantify the propagation of delays; this is based on the concept of delay multiplier, i.e. the ratio68

between the initial delay over the sum of all potential downstream delays. [25] developed two models69

that measure the level of flight delays [18] to examine the delay propagation in different spatial and70

temporal terms. [26] analysed the data of departure and arrival for ten major airports in order to71

improve the accuracy of delay prediction. The distribution associated to delay time probability was72

modelled though different functions, among which the Poisson one showed a better performance73

than the normal distribution in modelling the departure delay. [27] proposed a model for predicting74

the distributions of departure delays by studying the related factors. Inspired by the ideas of genetic75

algorithm, an improved expectation-maximization algorithm was developed. The experiments showed76

the good performance of the model on predictive capabilities and the robustness to the parameter77

selection. By considering both temporal (e.g. the hour of the day) and spatial (e.g. the status of the78
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Figure 1. Chinese air transportation infrastructure. All 277 Chinese airports are represented by blue
dots. The top 20 Chinese airports according to the total number of passengers are highlighted and
labelled with their four-character ICAO codes.

system at that time) variables, [13] proposed a new groups of models to predict flight delays. In79

addition to delay states of main airports and links (i.e., local variables), the global delay state were80

also characterised by new variables. [28] proposed an approach to predict the flight delays using81

deep learning. Moreover, simulation-based models have also been proposed to study the delays [29].82

Based on the simulation of service queue at airport and the itineraries of aircraft, [30] enhanced the83

Approximate Network Delays (AND) model to study the local delay that occurs at airports (by a84

queuing engine) and the delay propagation through the airport network (by a delay propagation85

algorithm). [31] proposed two multi-factor models to predict flight delays in fifteen-minute epochs for86

34 airports in the US. In order to predict generated delays and absorbed delays, the piece-wise linear87

regressions and multi-adaptive regression splines were used. Finally, many studies estimate the impact88

of delays on social welfare and the environment. [2] highlight that flight cancellations and missed89

connections can lead to substantial passenger delays, which are usually not captured in traditional90

flight delay statistics.91

3. Data and methods92

This section gives an overview on the data and methods used in our study. Specifically, Section 3.193

describes the data set obtained by Aviation Data Communication Corporation of China. Section 3.294

describes the weather data obtained at a 30-minute resolution, including features such as temperature,95

rain, visibility, and thunderstorms, for the most important airports in this study. Section 3.3 introduces96

the data set for air quality in Chinese cities. Section 3.4 describes how these data sets are used for97

generation and evaluation of prediction models, using data mining techniques, including random98

forests and Multi-layer perceptron.99
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Top airport pairs by flight count
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Figure 2. Highlighting of the top-ranked airport pairs in the data set according to different criteria:
Largest number of flights (upper left), largest number of delayed flights (upper right), largest sum of
delays (lower left), and largest median of delays (lower right).

3.1. Delay data set description100

The delay data set used in this study has been kindly provided by the Aviation Data101

Communication Corporation (http://www.adcc.com.cn), including information for all flights crossing102

the Chinese airspace in the 30-months period from May 1st 2016 to October 31st 2018. For each flight103

the information provided includes, among others:104

• ICAO code of scheduled departure/arrival airport;105

• ICAO code of actual departure/arrival airport;106

• Unixtime (time in seconds since January 1st, 1970) for scheduled departure/arrival time;107

• Unixtime (time in seconds since January 1st, 1970) for actual departure/arrival time.108

In this study, we focus on the arrival delay for domestic flights, calculated as the difference109

between the actual and scheduled arrival time; a positive number indicates that the flight arrived later110

than scheduled. A few instances in which the scheduled and actual arrival airports do not coincide111

have been discarded. Possible explanations for such flights are flight diversion or data inconsistencies.112

Moreover, we removed all flights with at least one airport not being located in China. After this data113

cleansing step, a total of 11 million domestic flights have been analysed. These flights cover the air114

transportation activity between 277 Chinese airports, as shown in Figure 1. The majority of airports is115

located in the Eastern part of China, given a higher population density. Figure 2 summarises a few116

top-ranked airport pairs, in terms of number of flights and delay statistics.117

3.2. Weather data set description118

Data about the historical meteorological conditions at the top-8 airports have been obtained from119

the website www.wunderground.com. This website provides structured weather information that is120

decoded from official METAR messages and suitably pre-processed. As for the original source, the121

temporal resolution of this data set is 30 minutes, yielding for each day in the period of our study a122

http://www.adcc.com.cn
www.wunderground.com
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collection of 24*2 datapoints representing the temporal evolution of weather at a specific location of123

interest. Particularly, five variables have been considered in this study:124

1. Temperature: air temperature in degree Celsius.125

2. Wind speed: speed of the main steady wind (i.e. not considering gusts) in knots.126

3. Rain: fraction of times the word “rain” appears in the “WX” part (present weather phenomena)127

of the METAR message. A value of 0.5 thus indicates that rain was reported in 24 of the 48128

messages available for one given day, i.e. for a total of 12 hours.129

4. Visibility: horizontal visibility measured in statute miles. Values higher than 10 have been130

rounded to 10.131

5. Thunderstorms: similarly to the rain metric, fraction of times the word “thunderstorm” appears in132

the “WX” part (present weather phenomena) of the METAR message.133

3.3. Air quality data set description134

In addition to the weather information encoded in the METAR messages, we here further consider135

information about air quality, obtained from U.S. Department of State Air Quality Monitoring Program136

(http://www.stateair.net/web/historical/). Data are available with a one-hour resolution for the137

following four cities: Beijing (ZBAA), Shanghai (ZSPD), Guangzhou (ZGGG) and Chengdu (ZUUU).138

We have extracted the data from the CSV files and associated a value to each flight, corresponding to139

the air quality value temporally closest to the scheduled departure time.140

3.4. Prediction models141

Beyond standard statistics analyses, the relevance of the aforementioned features is tested through142

data mining models - see Section 5.2. Three standard algorithms have been considered:143

1. Random Forests (RF). Combinations of Decision Trees predictors, in which each tree is trained144

over a random subset of features and records; the final classification forecast is then calculated145

through a majority rule. Random Forests are especially appreciated for their precision and low146

tendency to overfitting [32].147

2. Stochastic Gradient Descent (SGD): meta-algorithm in which multiple linear Huber loss functions148

are combined and optimised [33].149

3. Multi-Layer Perceptron (MLP): based on the structural aspects of biological neural networks, MLPs150

are composed of a set of connected nodes organised in layers. Each connection has a weight151

associated to it, which is tuned through the learning phase [34]. When more than two layers are152

included in the model, it can be proven that MLPs can classify data that is not linearly separable,153

and in general approximate any non-linear function.154

All three models have been implemented through the corresponding function of the Scikit-learn155

Python package [35]. Parameters used were: 2, 000 estimators for RF; a modified Huber loss and156

a maximum of 2, 000 iterations for SGD; and 3 layers with 40 neurons in the hidden one for MLP.157

Additionally, all presented results have been obtained through a Leave-One-Out Cross-Validation, in158

order to reduce the risk of overfitting [36]. This strategy involves selecting one single instance as test159

data, train the model using all remaining data, and evaluate the prediction on the initial instance; this160

process is finally repeated over all records, to obtain a final averaged score.161

4. Statistical analysis of flight delays in China162

As a first step, we perform standard descriptive analyses on the evolution of the average delay.163

Specifically, Figure 3 depicts the evolution of the average monthly delay, both aggregated over the164

whole system (top left panel), and individually for the eight most important airports (sorted according165

to the total number of flights in the data set). Two important facts can be observed.166

First of all, three peaks are present in the delay evolution, around July 2016, 2017 and 2018.167

While it may prima facie appear that they are due to the increased traffic usually observed during168

http://www.stateair.net/web/historical/
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Figure 3. Delay evolution in China from May 2016 to October 2018. Each panel represents the evolution
of the average (black lines) and median (green lines) of flight delays, calculated with a one month
resolution; additionally, the dashed grey lines (right axis) depict the evolution of the number of flights
(in thousands per month). The top left panel reports the aggregated results for the whole data set,
while the other ones for the top-eight airports (ranked in decreasing number of flights).

the summer, a weak correlation is actually present between both time series - R2 = 2.82 · 10−4 for169

the aggregated time series, with a maximum of R2 = 0.146 in the case of ZSPD (Shanghai Pudong170

International Airport). Considering the changes in traffic levels and delays between consecutive171

months (i.e. d̂(t) = log2 d(t)/d(t− 1), with d(t) being the average delay at month t) yields a slightly172

higher correlation for the whole system (R2 = 7.99 · 10−3), but still not high enough to justify traffic as173

a major driver for delays.174

Secondly, one may focus on the inter-year evolution, to check whether the average delay has175

reduced over time - see Table 1 for a synthesis. The peaks in the summer 2016 are always smaller than176

those of 2017; in turn, delays were again reduced during the summer of 2018, thus suggesting that177

the summer of 2017 was characterised by exceptional situations. On the other hand, a slight decrease178

in the mean level can be observed for the winter months, when compared with the previous year.179

Nevertheless, such decreases are seldom statistically significant. As can be seen in Table 2, which180

reports the p-values of a series of t-tests on the average delay for each pair of seasons, only ZSPD181

(Shanghai Pudong International Airport) presents a statistically significant decrease in the average182

delay between the two consecutive winters (significance level of α = 0.01, effective α∗ = 3.72 · 10−4
183

with a Šidák correction for multiple testing).184

5. Effect of weather on delay dynamics185

Results in the previous section indicate that the average delay has not strongly been correlated186

with the traffic level; additionally, it presents a complex evolution, with a weak overall decrease, but187

with stronger peaks during the summer season. In order to understand if these peaks can be explained188
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Airport 2016.05 - 2016.10 2016.11 - 2017.04 2017.05 - 2017.10 2017.11 - 2018.04 2018.05 - 2018.11
Domestic 12.36± 6.16 10.88± 3.30 26.13± 16.62 4.78± 3.27 9.04± 7.24

ZBAA 12.17± 9.13 11.77± 5.56 31.52± 23.57 3.58± 4.21 9.47± 8.83
ZSPD 13.88± 9.16 4.54± 3.53 21.87± 18.14 −6.98± 3.15 4.00± 8.92

ZGGG 13.88± 9.48 6.16± 4.45 24.27± 16.86 0.52± 3.23 12.24± 10.46
ZPPP 7.85± 5.57 13.89± 10.31 23.92± 20.47 3.03± 6.66 6.18± 8.06
ZGSZ 27.60± 11.12 14.93± 7.49 39.78± 23.37 3.06± 4.53 19.96± 13.29

ZUUU 9.33± 6.19 11.96± 3.46 23.31± 18.51 2.38± 3.35 7.98± 8.23
ZLXY 6.10± 4.28 3.86± 1.79 18.99± 12.00 1.97± 4.33 2.94± 5.05

ZUCK 10.05± 6.94 6.49± 3.45 29.90± 18.84 4.32± 2.53 9.76± 7.34
Table 1. Statistical analysis of delays by seasons. Columns report the average and standard deviation
of delays, in the winter and summer seasons of 2016, 2017 and 2018, for the complete data set and for
the top-eight airports in China.

Airport pV summer (2016 vs. 2017) pV winter (2016 vs. 2017) pV summer (2017 vs. 2018)
Domestic 0.1302 0.0149 0.0739

ZBAA 0.1342 0.0267 0.0950
ZSPD 0.4065 2.966 · 10−4 0.0870

ZGGG 0.2649 0.0471 0.2108
ZPPP 0.1435 0.0808 0.1176
ZGSZ 0.3270 0.0158 0.1383

ZUUU 0.1593 1.246 · 10−3 0.1350
ZLXY 0.0625 0.3979 0.0294

ZUCK 0.0667 0.2846 0.0642
Table 2. Statistical significance of delays by seasons. The columns report the p-value of a two-samples
t-test checking if the delay was significantly different between the same season of two consecutive
years.

through the presence of exogenous factors, we here focus on identifying potential relationships between189

weather conditions and the appearance of abnormal delays.190

Two complementary approaches are considered. Firstly, in Section 5.1, a standard statistical191

analysis is presented; afterwards, in Section 5.2, a machine learning model is constructed, aimed at192

forecasting the average level of delay observed for each day.193

In order to simplify the test, and reduce the level of noise in the data, all variables (thus including194

the average delay and all weather metrics) have been binarised. Mathematically, this corresponds to195

the transformation:196

v∗ =

{
0, if v < M(v)

1, otherwise
(1)

where v being the variable to be transformed, and M(·) the median operator. To illustrate, let197

us suppose that the delay at day i is di; this value is transformed to 1 if di is among the half largest198

observed delays, and 0 otherwise. A similar transformation is applied to all other weather metrics.199

5.1. Statistical analysis200

The presence of relationships between the binarised daily delay level and the weather metrics201

described in Section 3.2 is here assessed by firstly constructing a contingency table, for each pair of202

delay-metric; then applying a χ2 test. The resulting p-values are reported in Table 3. If one considers a203

significance level of α = 0.01 (α∗ = 2.28 · 10−4 with a Šidák correction for multiple testing), the second204

column of Table 3 indicates that the temperature and the presence of thunderstorms are almost always205

relevant factors. Additionally, the fourth and fifth columns of Tab. 3 suggest that airports can be206

divided in two groups: the largest five, whose delays have a high dependence on the presence of rain;207

and ZUUU, ZLXY and ZUCK, which are highly sensitive to visibility. Finally, ZBAA and ZSPD show a208
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Airport Temperature Wind speed Rain Visibility Thunderstorm AQI
ZBAA 1.34 · 10−6 3.53 · 10−4 1.21 · 10−6 0.849 6.47 · 10−12 3.15 · 10−4

ZSPD 6.87 · 10−26 0.127 7.51 · 10−08 0.029 4.70 · 10−13 4.34 · 10−5

ZGGG 2.05 · 10−15 0.355 1.35 · 10−36 0.145 2.40 · 10−32 0.114
ZPPP 8.95 · 10−20 6.03 · 103 9.31 · 10−26 0.957 8.44 · 10−21 –
ZGSZ 0.951 0.951 5.29 · 10−11 2.60 · 10−4 8.27 · 10−16 –
ZUUU 9.62 · 10−7 1.61 · 10−6 0.021 9.42 · 10−06 2.64 · 10−06 5.80 · 10−3

ZLXY 1.15 · 10−7 0.128 0.104 6.61 · 10−06 1.37 · 10−03 –
ZUCK 2.48 · 10−31 1.49 · 10−3 0.286 8.98 · 10−11 2.48 · 10−10 –

Table 3. Statistical relationships between weather, air quality and delays. Columns 2− 7 report the
p-values of χ2 tests assessing the dependence between the average delay at each airport and the
corresponding weather condition, as well as the air quality index (AQI).

Airport Temperature Wind speed Rain Visibility
ZBAA 11.07→ 135.6 7.88→ 5.72 15.9→ 35.2 0.69→ 0.00
ZSPD 11.84→ 120.6 1.09→ 2.95 8.58→ 19.8 3.14→ 2.95
ZGGG 12.16→ 112.5 0.13→ 0.00 38.4→ 29.3 4.56→ 0.17
ZPPP 15.24→ 116.9 0.00→ 3.50 4.23→ 52.2 7.05→ 1.56
ZGSZ 0.229→ 83.72 1.43→ 1.56 17.1→ 17.4 0.07→ 7.31
ZUUU 2.119→ 112.5 0.88→ 5.72 0.19→ 13.2 5.23→ 26.0
ZLXY 5.517→ 94.01 0.02→ 14.9 1.41→ 5.02 10.1→ 10.4
ZUCK 25.18→ 122.8 2.15→ 0.70 5.79→ 0.00 8.57→ 29.5

Table 4. Evolution of the weather-delay relationships. Each cell reports the evolution of the χ2 statistics
of a test assessing the presence of a relationship between high delays and a meteorological factor, for a
given pair airport-metric, from the first year of the data set (May 2016 to April 2017, left side of the
arrow) to the second year (May 2017 to April 2018, right side of the arrow).

weak dependence on the AQI. Nevertheless, it has to be noted that this latter metric is correlated with209

the temperature (σ = 0.167), the wind speed (σ = 0.223) and rain (σ = 0.054); its explanatory value210

may thus be limited.211

The strong dependence of delays with the temperature, and also partly with the presence of212

rain, suggests that they may be proxies of the presence of some extreme adverse weather events. In213

order to confirm this, Figure 4 depicts the evolution of the average monthly delay at each airport214

(black solid line), along with the fraction of days in which thunderstorms were reported at or near215

the corresponding airport (green dashed lines). It can be observed that both metrics are strongly216

correlated, with coefficients of determination R2 ranging from 0.171 and 0.734. If one further compares217

the delay distributions corresponding to days with and without thunderstorms (see Figure 5), it is clear218

that delays are significantly higher in the latter case - all airports, except for ZLXY, yield a significant219

p-value in a Welch’s two-samples t-test, for α = 0.01 and with a Šidák correction for multiple testing.220

Two conclusions can here be drawn. On one hand, the presence of thunderstorms strongly impact221

the dynamics of the system; this is not surprising, as such adverse events force aircraft to reroute, or222

even, if they are very close to an airport, to temporarily suspend operations. On the other hand, it223

can be appreciated from Figure 5 that thunderstorms are not enough to explain all extreme delays; on224

the contrary, in most cases the days with highest average delays correspond to the no-thunderstorms225

group. In synthesis, these results seem to suggest that thunderstorms are responsible for the global226

increase of delays observed during summer, but at the same time, that instances of extreme delays are227

independent from the weather condition.228

We further tried to understand whether these dependencies are static, or have evolved over time.229

Table 4 reports the evolution of the χ2 statistic, for each pair airport-metric, from the first to the second230

year of the data set - note that, being the degrees of freedom constant, the test statistic is proportional to231

the strength of the relationship. A clear trend is present in the temperature, for which the χ2 statistics232
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Figure 4. Evolution of the average monthly delay (black solid line) and of the fraction of days with
thunderstorms (green dashed line, right Y axis), for the top eight Chinese airports.
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Figure 5. Box-plots of the distributions of the average daily delays, for days without (left) and with
(right) thunderstorms near or at the airport. The p-values of Welch’s two-samples t-tests, assessing the
equality of both distributions, are reported in the upper part of each panel.

have become larger (and hence, the relationship stronger) through the end of 2017 and the beginning233

of 2018.234

Taking into account that in 2017 the system has experienced a substantial increase in traffic levels235

(see Figure 3), this may indicate that existing operational buffers have reached a limit, and that the236

presence of thunderstorms has become an even more important factor.237

5.2. Delay prediction238

To complete this analysis, we finally assess the presence of a relationship between weather239

conditions and delays by means of data mining models. Specifically, we use a model to forecast the240
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average level of delay for a given day and at a given airport using the observed weather condition, and241

by training it with all available historical data. Note that, while similar, this is not equivalent to the242

statistical analysis performed in Section 5.1. As shown for instance in [37], a data mining approach can243

help unveiling relationships between sets of features that are not easily spotted by a classical statistical244

approach. Similarly, the analysis here proposed is not aimed at creating prediction models, on the line245

of what presented in e.g. [13,28,31]; on the contrary, prediction scores are used as a way of quantifying246

the importance of the detected relationships.247

The results, using Random Forests (RF) and Leave One Out Cross-Validation (LOOCV) techniques,248

are reported in Figure 6 in the form of Receiver Operating Characteristic (ROC) curves. The closer249

these curves are to the upper left corner, the more precise is the forecasted value - the grey dashed250

diagonal lines representing a random classification. Four classifications are reported for each airport:251

one in which all the features (both traffic level and weather variables) have been included (black lines);252

a second one, in which information about thunderstorms was discarded (green lines); a third one only253

considering weather conditions (blue lines); and a fourth one, in which temperature information was254

discarded. It can be appreciated that a good prediction is achieved in most airports, with a maximum255

in the Area Under the Curve (AUC) of 0.826 for ZSPD (Shanghai Pudong International Airport).256

The use of the four different sets of features further allows to understand which aspect is more257

important from a prediction point of view - as its exclusion would substantially lower the score258

obtained. It can be seen that in all cases the traffic volume and the average daily temperature are259

the most important features, while the exclusion of information about thunderstorms has a minimal260

impact.261

We finally present in Figure 7 the results of the same classification problem, for all three algorithms262

described in Section 3.4, and using a simple classification score (fraction of correctly classified days)263

as the success metric. First of all, it can be observed that results are mostly independent of the264

considered metric, either AUC or a simple score; the two easiest airports to forecast are ZSPD and265

ZGGG in both cases. Secondly, results strongly vary when different algorithms are used, with RF266

clearly outperforming the two other models. SGD tries to construct a linear model, and its low score267

therefore suggests the presence of non-linear relationships in the data. On the other hand, the low268

number of instances (913, one per considered day) may not be enough for MLP to reach a stable269

solution. Note that changing the parameters of the model, as the number of hidden layers and the270

number of neurons, does not improve the score. Thirdly, the horizontal black dashes report the271

average classification score obtained when labels (i.e. having large or small delays) are randomly272

shuffled; in the case of RF the classification score on the real data is much higher than the one for273

the randomised data set, confirming that the results presented in Figure 6 are statistically significant.274

Finally, the black vertical bars alongside the RF ones indicate the classification score obtained when275

classifying only days without thunderstorms. It can be appreciated that the score is lower, but not276

substantially; it is therefore possible to successfully predict the level of delays also for days without277

strong adverse meteorological phenomena.278

6. Discussion and conclusions279

In this contribution we presented the results of a set of statistical and data mining analyses aimed280

at characterising the appearance and evolution of delays in the Chinese air transport network. These281

analyses leveraged on a data set comprising more than 11 million flights, which allowed describing how282

the behaviour of the system has evolved during two consecutive years, and giving a first estimation of283

the underlying causes.284

The evolution of delays through time suggests that these have not diminished, in spite of efforts285

for improving the coordination between airports, and between civil and military air space users. As286

discussed in Sec. 4, summer peaks for years 2016 and 2018 are not different in a statistically significant287

way. On a positive note, the situation has not worsened in spite of a significant increase in traffic - see288

Fig. 3.289
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Figure 6. ROC curve of classification models predicting the level of binarised delays at each airport.
All results correspond to RF algorithms and a LOO cross-validation strategy. The insets further depict
the corresponding AUC for each classification model.

Figure 7. Classification score obtained by three standard data mining algorithms (see Section 3.4 for
definitions), for the problem of forecasting the binarised delay at each airport. The horizontal dashes
represent the average value obtained in a classification in which labels have randomly been shuffled.
Additionally, the vertical black bars alongside RF results indicate the classification score obtained when
predicting the delays for days without thunderstorms.

Moving to delay causes, the results of Figure 6 indicate that a significant fraction of the delays290

appearing in the system can be predicted, provided some variables (like weather conditions and traffic291
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levels) are known, or at least can be estimated in advance. From an operational point of view, this292

conclusion has major consequences. First of all, it supports the idea that real-time prediction models can293

be developed and deployed, ingesting weather forecasts and scheduled traffic patterns and yielding294

predictions of the delay levels. These could be used to improve the allocation of resources, or even295

warn passengers of forthcoming major disruptions in their trips. In addition, these results points to a296

relevant conceptual issue: if the appearance of an abnormal delay can be predicted, it also means that297

selective resources can be put in place for its mitigation. In contrast, only broad-spectrum mitigation298

strategies can be implemented if delays were completely random, as are for instance those due to299

random equipment failures, with an important reduction of their cost effectiveness. Predictability thus300

here implies actionability.301

Regarding the factors associated with the appearance of delays, the most important ones are302

the presence of thunderstorms and the season of the year (the temperature being a proxy of the303

latter). The relevance of thunderstorms is self-evident, as aircraft have to reroute around them, and304

could even make an airport temporarily suspend its operations. This is in line with what is reported305

in the literature for other airports, see for instance [38–40]. These adverse weather phenomena are306

nevertheless not enough to explain all delays, and, as shown in Figure 5, extreme delays can also307

appear when no thunderstorm is recorded. The solution to this puzzle resides in the second factor,308

i.e. the season of the year. China customarily suffers from extreme weather events during summer,309

including Super Typhoons, partly because of the presence of the East Asian Summer Monsoon [41].310

With the monsoon, masses of warm and moist air arrive over China, which also result in an increase311

in the observed temperature and rain - note the low p-values for these two variables in Table 3.312

While typhoons may be far away from a given airport, they are still capable of strongly affecting its313

operation, both by being in the path of flights arriving or departing from it, or through the generation314

of reactionary delays.315

In synthesis, results indicate that most extreme delays in China can be explained either by extreme316

weather events near an airport, or by disrupting events en-route. As shown in the insets of Fig. 6,317

the second most important element to achieve a good delay prediction is the traffic volume, even318

though it has a minor effect in the case of some airports (e.g. ZGGG and ZUUU). This seems to partly319

support the hypothesis of the importance of the limited availability of airspace resources, as suggested320

by previous analyses [1] - even though the opposite has also been defended [20]. These insights can321

potentially be used to improve the system at two levels. On one hand, results as those presented in Fig.322

6 point towards which airport is most sensitive to which factor, thus indicating how new resources323

have to be prioritised. To illustrate, airports like ZBAA and ZGSZ would benefit from an increase324

in their capacity, while this would be not a priority for e.g. ZUUU. On the other hand, the analyses325

here presented could be included into a monitoring software, designed to process historical data (for326

instance of the last week or month), and raise alerts when an unusual behaviour is observed - e.g.327

when capacity becomes a factor more relevant than weather for delay appearance.328

In spite of the multitude of statistical and data mining tests here presented, it is important329

to highlight that these can only detect co-occurrences, but not necessarily causalities. The factors330

really responsible for the observed events may be hidden from us, and yet manifest as spurious331

correlations [42,43]. This is the case, for instance, of the temperature: a hotter day does not directly332

delay aircraft, but a higher temperature is correlated with a higher probability of thunderstorms,333

which are the ones having the real impact. In order to confirm the causal nature of those relationships,334

more data will be needed, eventually endowed with a temporal evolution. Moreover, additional335

analysis could be performed regarding the temporary limited usage of airspace. For future work, one336

interesting direction is to extend our results to those of the complete system, i.e. the worldwide airport337

network [44].338
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